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ABSTRACT

This report documents the accomplishments of the NASA sponsored
effort to develop performanes: evaluation capabilities for the design

of physical systems. These accomplishments are:

Development of a theory of limiting performance of

large systems subject to steady state inputs

Application and modification of PERFORM, the computa-
tional capability for the limiting performance of

systems with transient inputs

Demonstration that use of an inherently smcoth control
force for a limiting performance calculation improves
the system identification phase of -the design process

for physical systems subjected to transient loading.
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INTRODUCT | ON

The primary goals of this study were fo formulate and develop a
capability for the limiting performance of large steady state systems.
It was shown early in the study that the previously developed capability
for transient systems could not be extended to steady state environ-
ments. It was necessary to begin anew and formulate a different theory
of limiting performance. This new theory has been applied fo several
simple systems. Most of this report deals with the formulation of the

limiting performance problem for steady state systems.

LIMITING PERFORMANCE OF STEADY STATE SYSTEMS

The concept and importance of limiting performance of mechanical
systems is described in Ref. I.

The formulation of the limiting performance study of a mechanical
system subject to steady state sinusoidal loading is given in
Appendix |A. The formulation Is in terms of a linear programming
problem. The underlying concept in this formulation is the use of
a Fourier expansion to represent both the responses and control
forces. The coefficients in the Fourier expansion of control forces
are the variables to be found. This formulation is applied to a
single degree of freedom (SDF) system for both iinear and nonlinear
control forces in Appendix IB. The solution for the linear case
corresponds to results in Ref. |, while for the general case the
solution compares well with results obtained by an optimal control
approach (Ref. 2).

The formulation of Appendix IA is time-dependent. For a linear
system the problem is reformulated in Appendix I1A as a time-independent
nonl inear programming problem. The merit of this formulation is its
t+ime-independence with a concomitant reduction in the dimension of the
problem. The advantage of obtaining the Iimiting performance of a

system without multiple analyses of the system has been retained.



This formulation is applied to two specia! cases in Appendix 118,
In both cases the resul+s agree with known solutions.

The steady state limiting performance solution is extended to
systems with multiple forcing functions of different frequencies in
Appendix 111. ‘

The major remaining unresolved problem for the steady state
formulation is that of l'imiting performance of systems subject to
forcing functions with frequencies varying over a prescribed range.
The present formulations are restricted to systems subjected to
loading at a prescribed frequency. The study of the frequency range

problem is continuing.

APPLICATION AND MODIF ICATIONS OF PERFORM

During the first year of this effort a computer capability
(PERFORM) was developed for calculating the limiting performance of
systems with transient inputs. The final report covering this
effort contains detailed documentation and applications of PERFORM,
This report has been revised and Is now entitled PERFORM -~ A PERFORMANCE
OPTIMIZING COMPUTER PROGRAM FOR DYNAMIC SYSTEMS SUBJECT TO TRANSIENT
LOADINGS. The revised report contains new results for a train impact
problem and a STOL ride control problem. The application to the train
impact problem was used as part of the paper "Limiting Performance of
Ground Transportation Vehicles Subject to Transient Loading" (Ref. 3)
presented at the AIAA/ASME/ASCE |3+h Structures, Structural Dynamics,
and Materials Conference. In the problem, the train impact mode! from
Ref. 4 is modified so that the cushion or shock absorber is replaced
by a control force. The problem is to find the minimum force that
must be transmitted to the lading for a given cushion travel distance
under specified impact conditions. Performance tradeoff diagrams were
computed. Detalls of the problem formulafion.are given in Ref, 3,



The limiting performance problem of the ride control system
for the Twin-Otter STOL airplane (Ref. 5) has been put in PERFORM
format. Computations of the sort shown-im Fig. |l were made. Here
the tradeoff between the min-max acceleration at the center of gravity
of the airplane and the level of controls was calculated using
PERFORM. Details of the formulation are to be found in Ref. 5.

PERFORM has been modified to permit its use in conjunction with
OPTIMA, a CDC computer softfware system that can solve large | inear

programming problems. Previously, the 184 programn MPS/360 was used.

SYSTEM IDENTIFICATION

The use of a Fourier series expansion of conTrof forces in‘fﬁe.--'
steady state problem suggested a possible application for the design
of transient systems. It was shown that use of the "smooth" confrolA
force employed in The steady sfafe problem for the !imlting performance
of transient systems eases the task of identifying the corresponding
suboptimal design configuration. Heretofore, transient systems had
been designed using the |Imiting performance based on control forces
that were given a piecewise constant time discrefizaffon. This
application of the Fourier series to limiting performance problems

was demonstrated for single and two degree of freedom sysfems.
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APPENDIX 1A

Formulation of the Limiting Performance Problem for a Dynamic

System Subject fo Steady-State Sinusoidal Disturbances.

Consider a dynamic system described by +ha fol lowing equations

of motion:
MX + CX * KX * VU = Ff B
where M = N x N mass matiix
c = N x N damping matrix
K = N x N stiffness matrix
v = N x J coefficient matrix associated with
control force vector
F = N x L coefficient matrix associated with
forcing function vector
and N = no. of degrees of freedom of the system
= no. of isolators or controllers
L = no. of disturbances applied on the system
Let
- —flsinm{l -
L_f'LSinm‘i‘
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Substitute (3), (4) into (1) and use (5) fo obtain

X, = WU, + 2Z.f (6)
i =i =i 0
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- | - I T
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Thus, from equation (6), all the coefficients in the Fourier ex-

pansion of the responses (i.e. X's) can be expressed in terms of those

of U's.

From Eqs. (6) and (4) we get

x:B{nUm""Imfo (8)



where

R ={WSS sinwt + WCS, coswt WSC
-m | —] —|

------ WSS  sinmwt + WCS  cosmwt WSC  sinmwt + WCC cosmwf]
——m —m —=m ——m
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Im =L |ZS, siniwt + ZC, cosiwt
i=t —i (9
UI Usi
_ : U_,
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Y 0
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and from (3)
U0=sc © , : (10)
—m m
where
ot : |
SC =|1 sinwt ! I coswt [m==mmmm——— { | sinmwt i | cosmwt
R I~ ! - AR
1 =J xJ identity matrix

We have expressed X, U in terms of ﬁm’ a set of unknown
numbers. Note that the matrices T , R , SC are all functions of time.
—m’ —m’ —m

Suppose the |imiting performance problem of interest can be stated

as: Find the U that minimizes the maximum ¥ while subject to the con-

straints
YLi < 9, < YU_l
Qhere ‘
?=|§+_P_§+_P__>'<+P__U+g_? (i)



B =Yl X+Y2X+Y3X+Ya0+7Y5F (12)

This problem can be converted to: Find ¢, U such that ¢ is minimized

subject to
Iy, I = ¢ for j =1, 2,...NOB
J (13)
YL, S, S YU for i =1, 2,...N0C
where
NOB = number of objective functions
NOC = number of constraints 7
The poblem defined by (13) is one of |inear programming, i.e.
Find z

1o minimize ¢ z

-2
subject fo Hz = G
- <

where

f Sppp.




Here
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APPENDIX B

Solutions of Limiting Performance Problem for Single Degree of Freedom

System
Consider the SDF problem (Fig. I-1) of finding U such that

¢ = max|z| = méx|U] is minimized while |X] S A
The equation of motion is T m= |
. ' X l Z
mZ+U-=20
Z=X+f =X+ sinwt 1
[

These give

| I
.- ~ f = sinwt
X + U = w? sinwt

Figure 1-i
for a unit mass.
For A = 0.5, w = 20, the optimal control approach (Ref. 2) glves ming = 162.4,
The same problem has been solved by linear programming using 9 pairs of
terms in a Fourjer representalion of U, and the result Is min$ = 163.2.
These solutlions are very close. The optimal control approach is prac-
tical for simple systems only, while the linear programming formulation

applies to large systens.

For the first time In limiting performance studies it is possible
to distinguish between linear and nonlinear control forces. |I|f the
Fourier series Is restricted to one sine and one cosine term then the per-
formance of a |inear system Is obtained. For the linear SDF problem,
the linear programming formulation provides the same solution calculated
fbr this case in Ref. |. The new formulation is significant because the
treatment of Ref. | cannot be extended to complex systems to which the

linear programming formulation. can. be applied.



APPENDIX 1A

Formulation of a Time-lIndependent Limiting Performance Solution for Linear

Dynamic Systems Subject to Sinusoldal Inputs

Consider a multidegree of freedom system described by

MK + CX + KX + VU = F T, sinut | ()

Since we seek the |Imiting performance for a Iinear system, let

(e |
it

Us sinwt + Uc coswt
(2)

X

X sinwt + X coswt
s c

Substitute (2) iInto (1) ta give

is Us i
M ol +Z %, (3)
X U
c c
where -1
— - - — -
Mo? + K -Cu | Vo9 WSS WSC
W= -
Cw Mw? + K 0 -V WCS  WCC
| = S : |
-1
—_ - - - - -
z= |’ +K £ zs
Cw Mw? + K 4] L
— - - — - 4 L )
Let the objective function be
¥ = PIX + P2X + P3X + P4U + P5F | (4)
and the constraint be
YT SYIX + Y2X + Y3X + Y40 + Y5F SYU (5)

13



Using (2) and (3), (4) and (5) becoms

= ¢ sinet + d  cosuwt | (6)
s c

and

YL s és sinwt + 6c cosut:. S YU (7)
where

3 = -PI WSS U w2 -P1 WSC U w2 -PI 7S f.w?

] — s — = Tc- — =0
(8)

The quantity EC is the same as Es with WCS, WCC replacing WSS, WSC re-
spectively. Os and GC are the same as 05, ¢c with Pl..... PS5 replaced
by Yl.....Y5.

From (6), we can write

max ¥, =0 .2 + ¢ 2 (9)
i si ci

and (7) is equivalent to

0.2 + o .2%yy,2 ' (10)
Si (o] | .

since, in general, YLi = -YUi

Hence, if we define

¢ = max [¢si2 + ¢Ci2] for 1 =1, 2, ..., NOB
i

the limiting performance problem can be restated as: Find ¢, Gs' U
such that

c

¢ is minimized and

9
S

2 2 < - ‘
i + Qci ¢ for i I, 2,.....NOB

and A o ' : (1)

0.2 + 0.2 ¢ W2 j=1,2,.....N0C
Sj N



i

where NOB = no. of objective functlons

no. of constraints

]

NOC
Using (8), everything. in (11) can hevexpressed: In terms of Us and
Uc' Note that the time depenmdency of the response variables has been

eliminated. The problem posed by (il) is one of nonl inear programming.



APPENDIX 11B

Examples of Limiting Eenfqrmance Bounds Based on the Time-Independent

Formulation
. SDF system (Fig. 11-1)
The equations of motion are
mz +U=0
Z=X+f=X+ fo sinwt
ifm=|

X+U-= wzfo sinwt

| ¢

Figure 11-1

We want fo find U that minimizes |U| subject to [X] <A

Let

c
1

U sinwt + U_ coswt
s c

X = X slnwt + X_ coswt
: s c

Then, following the previous formulation,

c
c

xs 2 fO Xc 2

€
€

The problem now Is to find U that minimizes (US2 + Ucz) subject to

US uC
(X 2 + xc2> = (= -fo)z + (=2
S wz m2

The solution can be found easlily (e.g. by graphical means).

‘We get
=2 (f -
U, =W (fy A)
u =0.0
C .

max|u| = w? (fy = A)

Z
]
f = fo sinwt
()
(2)
(3)
(4)



Equation (4), when hormalized, is the same as the one obtalned in Ref. I.

2. Two Degree of Freedom (DOF) System

For the two DOF system shown In Fig. I1-2a, Den Hartog (Ref. 6)

derived the result that under certain
conditions, the main mass M In the Ji”PO sinwt

system does not move at all,

This optimal condition can be obtalned

AAA,

using the limiting performance approach.

The equations of motlon are (Fig. 11-2b)

MXy + KXy + U = Py slnut

mXp = U = O

Then

U=U sinet + U_ cosuwt
s c

X, = X_, sinet +X_, coswt 1 =1, 2

I si cl
US-PO —US X
X = X T e 2
Is Mw2-K _25 mw? (b)
UC -UC
= X, = — Figure 11-2
e Mw2-K 2 2

Now, we want to find the U that minimizes |X;]. This Is equivalent to

finding the U that minimizes
u_-p, |2 v |2
s 01, c

Mw2-K Mw2-K

2 4 x.2 =
Xls ch

The solution is seen to be

U, =Py, U, =0 and min max|X;| =

s 0’
Suppose now we modified the problem by putting a consfrainf on the rattle
space between the two masses. Now we seek min max|X;| white |X1-Xa| S A.
Stated In terms of a nonlinear programming problem, this becomes: Find
Us’ UC to minimize



2 .2
xls + xlc
subject to
- 2 - 2 2
(Xls XZS) + (ch x2c) A
The solution (valid for the case Mw?2 > K) is

U =Pty U =0

| c
P, +¥ P
min max|X;] = ‘ J 9
[Mw2 - K]
where )
o Pomm
=
“Mw2 + K + muw2
I mw? (Mw2-K)
Y = , A
b iMe? —Kemw?

This problem would be very difficult 1f i+ were to be treated using the

Den Hartog approach.
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where

>

jpi

X .
L "Njpl
Substitute (2), (3) into (1) and equate the coefficients of terms

cosiwj* and sinlef respec+ive|y. Then

)

Xxjpl.1
X,Jpl

(-Mi2w.2 + K) X. . — (Cla) X,
J =" TJsi =J

(-_l\_4_i2wj2 + K X,

(Ciw.) X. .
bt J JSI
o
where F.=F E
Jj - :
f,
J
[ 0
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. wssd |
jsi —
RJ.C‘ LwcsJi
with _
ji
s
EJ' ) wcsjI
) |—

for p=5s, C

jei

wsc 1]

woe !

o Ji
WSC

gt
woc'

20

Jjci =

(4)



and

75!
AR = YW |FS
pioik - !
- - 0
- 21
-MiZw.2 + K Clo,
YN o= |
Clw -Mi2w.2 + K
L = - =
From (3) and (4) we have
_ L m o= 1 - il
X=1 I %zJ' gdl ¢+ 7J ] (5)
-m m m

i ji T :
Bm [ﬂég slnin+ + ¥CS cosuwjf .
wsed! siniut + wee!! cosiwjf:]

T - [75“' siniwjf + 7odi cosiwj+]

ji | Yysi

il
{

chi

Equation (2) can be rewritten as

- L m i o= Ji .
U= ¢ L §9m Um , (6)
J=1 i=1
where
Ji _ :
§9m = l_siﬁimJT : l_coslef

1 1s aJd xJ ldentity matrix.
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We have just expressed X and U in terms of the unknown coefficients

ﬁnfl' Following the procedure In Appendix IA, the limiting per formance

problem can now be placed in | inear programming form with the coefficients

of U as unknowns.
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